Decomposition Methods for Large-Scale Optimization of Power Systems
نویسندگان
چکیده
Variable renewable power sources are being integrated into power systems across the world. This restructuring process requires extensions of most parts of the power system infrastructure: generation, transmission, as well as storage capacity. Joint optimization of infrastructure extension and operation is a powerful method to identify technical solutions with minimal economic costs. This optimization problem is often formulated in a simplified linear problem [1]. Even though the resulting linear programs can be passed to standard solvers, a challenge arises from the large dimensionality of the problems, especially if a high temporal and spatial resolution is desired.
منابع مشابه
An adaptive modified firefly algorithm to unit commitment problem for large-scale power systems
Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the additional choice of turning generators to be on or off. In this paper, in order to improve both the exploitation and exploration abilities of the firefly algorithm (FA), a new mo...
متن کاملSecurity-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation
Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...
متن کاملIncorporating Wind Power Generation And Demand Response into Security-Constrained Unit Commitment
Wind generation with an uncertain nature poses many challenges in grid integration and secure operation of power system. One of these operation problems is the unit commitment. Demand Response (DR) can be defined as the changes in electric usage by end-use customers from their normal consumption patterns in response to the changes in the price of electricity over time. Further, DR can be also d...
متن کاملDetermination of Composite System Adequacy Equivalents Using a Reduction Technique: a Case Study on a Regional Electric Company
Reliability evaluation of a large-scale composite power system faces to numerous events/outage and consequently imposes an extensive burden of calculations. In order to simplify the problem, determination of an equivalent system for large-scale power system is inevitable. This paper proposes a framework as reduction technique to separate a composite power system to three areas: external area, o...
متن کاملAn Intelligent Approach Based on Meta-Heuristic Algorithm for Non-Convex Economic Dispatch
One of the significant strategies of the power systems is Economic Dispatch (ED) problem, which is defined as the optimal generation of power units to produce energy at the lowest cost by fulfilling the demand within several limits. The undeniable impacts of ramp rate limits, valve loading, prohibited operating zone, spinning reserve and multi-fuel option on the economic dispatch of practical p...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013